Lecture 10:
Graph Theory

Part 2 of 3



Outline for Today

« Walks, Paths, and Reachability
 Walking around a graph.

« Application: Local Area Networks
 Graphs meet computer networking.

* Trees

A fundamental class of graphs.



Recap from Last Time



Graphs and Digraphs

A graph is a pair G = (V, E) of a set of
nodes V and set of edges E.
 Nodes can be anything.

 Edges are unordered pairs of nodes. If
{u, v} € E, then there’s an edge from u to v.

« Adigraph is a pair G = (V, E) of a set of
nodes V and set of directed edges E.

 Each edge is represented as the ordered pair
(u, v) indicating an edge from u to v.



Two nodes in an undirected graph are called
adjacent if there is an edge between them.



Using our Formalisms

« Let G = (V, E) be an (undirected) graph.

 Intuitively, two nodes are adjacent it they're
linked by an edge.

 Formally speaking, we say that two nodes
u, v € Vare adjacent it we have {u, v} € E.

 There isn’t an analogous notion for directed
graphs. We usually just say “there’s an edge
from u to v’ as a way of reading (u, v) € E
aloud.



New Stuff!



Walks, Paths, and Reachability



A walk in a graph G = (V, E) is
a sequence of one or more
nodes vi, vz, Vs, ..., Va such that
any two consecutive nodes in
the sequence are adjacent.

The length of the walk vy, ..., vn
iIsn-1.

(This walk has
Bar Fla
s length 10, but
\ [ visits 1 cities,)
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a sequence of one or more
nodes vi, vz, Vs, ..., Va such that
any two consecutive nodes in
the sequence are adjacent.

The length of the walk vy, ..., vn

isn-1.
@9 A closed walk in a graph is a
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(By convention, a closed walk
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A walk in a graph G = (V, E) is
a sequence of one or more
nodes vi, vz, Vs, ..., Va such that
any two consecutive nodes in
the sequence are adjacent.

The length of the walk vy, ..., vn
1Isn-1.

A closed walk in a graph is a
walk from a node back to itself.
(By convention, a closed walk
cannot have length zero.)

A path in a graph is walk that
does not repeat any nodes.
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A walk in a graph G = (V, E) is
a sequence of one or more
nodes vi, vz, Vs, ..., Va such that
any two consecutive nodes in
the sequence are adjacent.

Sac The length of the walk vy, ..., vn
isn-1.

A closed walk in a graph is a
walk from a node back to itself.
(By convention, a closed walk
cannot have length zero.)

A path in a graph is walk that
does not repeat any nodes.
‘ SE Sac, LA, Phoe, Flag, Bar, LA I
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length six,)
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a sequence of one or more
nodes vi, vz, Vs, ..., Va such that
any two consecutive nodes in
the sequence are adjacent.

The length of the walk vy, ..., vn
isn-1.

A closed walk in a graph is a
walk from a node back to itself.
(By convention, a closed walk
cannot have length zero.)

A path in a graph is walk that
does not repeat any nodes.

A cycle in a graph is a closed
walk that does not repeat any
nodes or edges except the

first/last node.
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A walk in a graph G = (V, E) is
a sequence of one or more
nodes vi, vz, Vs, ..., Va such that
any two consecutive nodes in
the sequence are adjacent.

A path in a graph is walk that
does not repeat any nodes.

A node v is reachable from a
node u when there is a path
from u to v.
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A walk in a graph G = (V, E) is
a sequence of one or more
nodes vi, vz, Vs, ..., Va such that
any two consecutive nodes in
the sequence are adjacent.

A path in a graph is walk that
does not repeat any nodes.

A node v is reachable from a
node u when there is a path
from u to v.

A graph G is called connected
when all pairs of distinct nodes
in G are reachable.

(This graph 1s
not connected.)



A walk in a graph G = (V, E) is
a sequence of one or more
nodes vi, vz, Vs, ..., Va such that
any two consecutive nodes in
the sequence are adjacent.

A path in a graph is walk that
does not repeat any nodes.

A node v is reachable from a
node u when there is a path
from u to v.

A graph G is called connected
when all pairs of distinct nodes
in G are reachable.

A connected component (or
CC) of G is a set consisting of a
node and every node reachable
from it.




Fun Facts

 Here’s a collection of useful facts about graphs that you can
take as a given.
« Theorem: If G = (V, E) is a (directed or undirected) graph and

u, v € V, then there is a path from u to v if and only if there’s a walk
from u to v.

« Theorem: If G is an undirected graph and C is a cycle in G, then C’s
length is at least three and C contains at least three nodes.

« Theorem: If G = (V, E) is an undirected graph, then every node in V
belongs to exactly one connected component of G.

« Theorem: If G = (V, E) is a (directed or undirected) graph and u, yo,
Vi, ..., ym, vis a walk from u to v and v, zo, 21, ..., Zn, X is a walk from v
to x, then u, yo, y1, ..., ym, v, 20, 21, ..., Zn, X 1s a walk from u to x.

* Looking for more practice working with formal definitions?
Prove these results!



Time-Out for Announcements!



Problem Set Two Graded

75% Percentile: 69 / 73 (95%)
50t Percentile: 67 / 73 (92%)
25% Percentile: 65 / 73 (89%)

0-41 42-45 46-49 50-53 54-57 58-061 62-65 66-69 70-73




Midterm Exam Logistics

* Our first midterm exam is next Monday, October 20
from 7:00PM - 10:00PM.

* Seating assignments are available. Write your seat
number down in case the WiFi cuts out before the exam.

* You're responsible for Lectures 00 - 05 and topics
covered in PS1 - PS2.

« Later lectures (functions forward) and problem sets (PS3
onward) won’t be tested here.

« Exam problems may build on the written or coding
components from the problem sets.

 The exam is closed-book, closed-computer, and limited-
note. You can bring a double-sided, 8.5” X 11” sheet of

notes with you to the exam, decorated however you'd
like.


https://web.stanford.edu/class/cs103/cgi-bin/midterm1-seating/

Preparing for the Exam

* Your amazing CA Ari is holding a review
session this Friday from 3PM - 4PM in
CoDa E160.

 Make sure to review your feedback on
PS1 and PS2.

 “Make new mistakes.”
 Come talk to us if you have questions!

 There’s a huge bank of practice problems
up on the course website.

* Best of luck - you can do this!



Participation Opt-Out

* By default, all on-campus students have
5% of their grade allocated from lecture

attendance and participation.

 If you are an on-campus student and
want to opt out, shifting that 5% onto

your final exam, fill out the opt-out
form on Ed by Friday at 11:59 PM.



Back to CS103!



Application: Local Area Networks



The Internet and LANS

* The internet consists of several separate local
area networks (LANSs) that are
“internetworked” together.

 L.ocal area networks cover small areas - a
single hallway in a dorm, an office building, a
college campus, etc.

* The internet then links those smaller LANSs into
one giant network where everyone can talk to
everyone.

 Focus for today: How do messages flow
through a LAN?



Message Movement

« When a computer Q
receives a message, it
repeats that message

on all its links except
the one it received

o

the message on. @ ‘\
* The computers don't /
inspect the message
contents or try to be
clever - it’s purely
“came in on link X,
goes out on all links

but X.”

p




The network graph
must be connected.




Broadcast Storms

e A broadcast storm occurs when there’s
a cycle in the network graph.

* A single message can repeat forever, or
exponentially amplify until the network
fails.

* Solution: Don’t let the network graph
have any cycles.

« A graph G = (V, E) is called acyclic if it
has no cycles.



You have a collection of computers
that need to be wired up into a LAN.
How should you choose the shape of

the network?
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Minimally Connected

(Connected, but deleting
any edge disconnects
its endpoints.)

Il\
J\

Connected, Acyclic

If any of these
conditions hold,
then all of these
conditions hold.

A graph with any
of these properties
is called a tree.

Maximally Acyclic

(Acyclic, but adding
any missing edge
creates a cycle.)




Connected, Acyclic

Maximally Acyclic

(Acyclic, but adding
any missing edge
creates a cycle.)




Theorem: Let T = (V, E) be a graph. If T is connected and
acyclic, then T is maximally acyclic.

Proof: Assume T is connected and has no cycles. We need to
prove that T is maximally acyclic. We already know that T
is acyclic. So choose distinct nodes x, y € V where
{x, y} & E; we’ll prove adding {x, y} to E closes a cycle.

Because T is connected, there is a path x, ..., yfrom xto y
in T. Now add {x, y} to E. Then we can form the closed
walk x, ..., y, x. We claim that this is a cycle. To see this,

note the following:
- No node is repeated except the start/end node x: nodes

X, ..., y are all distinct because x, ..., y is a path.
- No edge appears twice: none of the edges used in
X, ..., y are repeated (x, ..., y is a path). Furthermore,

the edge {x, y} isn’t repeated since the path x, ..., y
was formed before {x, y} was added to E.

Thus adding {x, y} to E closes a cycle, as required. W



Check the appendix for the
other two steps of the proot.



More to Explore

* A tree kind of seems like a bad way to design a
network. (Why?)

» Actual local area networks allow for cycles. They
use something called the spanning tree protocol
(STP) to selectively disable links to form a tree.

* Routing through the full internet - not just within
a LAN - is a fascinating topic in its own right.

« Take CS144 (networking) for details!

 If we have time, we’ll explore more on network
routing later in the quarter.



Recap tfrom Today

 Walks and closed walks represent ways
of moving around a graph. Paths and
cycles are “redundancy-free” walks and
cycles.

» Trees are graphs that are connected and
acyclic. They're also minimally-connected
graphs and maximally-acyclic graphs.

* Trees have applications throughout CS,
including networking.



Next Time

« The Pigeonhole Principle

* A simple, powertul, versatile theorem.
 Graph Theory Party Tricks

* Applying math to graphs of people!
A Little Movie Puzzle

« Who watched what?



Appendix



Theorem: Let T = (V, E) be a graph. If T is minimally
connected, then T is connected and acyclic.

Proof: Assume T is minimally connected. We need to show that
T is connected and acyclic. Since T is minimally connected,
it’s connected, and so we just need to show that T is acyclic.

Suppose for the sake of contradiction that T contains a cycle
X, ..., V, X. Note in particular that this means x, ..., y is a path
in T and that this path does not use the edge {x, y}.

Since T is minimally connected, deleting the edge {x, y}
from T makes y not reachable from x. However, we said
earlier that x, ..., yis a path from x to y in T that does not
use {x, y}, so x and y remain reachable after deleting {x, y}.

We have reached a contradiction, so our assumption was
wrong and T is acyclic. B



Theorem: Let T = (V, E) be a graph. If T is maximally acyclic,
then T is minimally connected.

Proof: Assume T is maximally acyclic. We need to prove that
T is minimally connected. To do so, we first prove T is
connected. Pick any x, y € V where x # y; we’ll show there’s
a path from x to y. Consider two cases:

Case 1: {x, y} € E. Then x, y is a path from x to y.

Case 2: {x, y} € E. Imagine adding {x, y} to E. Since T is
maximally acyclic, this closes a cycle x, ..., y, x passing
through {x, y}. Then x, ..., yis a path in T from x to y.

In either case, we have a path from x to y, as needed.

Next, suppose for the sake of contradiction that there is an
edge {x, y} € E where T remains connected after deleting
{x, y}. This means that there is a path x, ..., yin T after
removing {x, y}. By adding {x, y} to the end of the path, we
form a cycle x, ..., y, x in T. This is impossible because T is
acyclic. We’ve reached a contradiction, so our assumption
was wrong and T is minimally connected.



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41

